Mask4Former logo of the project

Mask4Former: Mask Transformer for 4D Panoptic Segmentation

RWTH Aachen University


TL;DR: Mask4Former is a transformer-based model for 4D Panoptic Segmentation, achieving a new state-of-the-art performance on the SemanticKITTI test set.

Accurately perceiving and tracking instances over time is essential for the decision-making processes of autonomous agents interacting safely in dynamic environments. With this intention, we propose Mask4Former for the challenging task of 4D panoptic segmentation of LiDAR point clouds.

Mask4Former is the first transformer-based approach unifying semantic instance segmentation and tracking of sparse and irregular sequences of 3D point clouds into a single joint model. Our model directly predicts semantic instances and their temporal associations without relying on any hand-crafted non-learned association strategies such as probabilistic clustering or voting-based center prediction. Instead, Mask4Former introduces spatio-temporal instance queries which encode the semantic and geometric properties of each semantic tracklet in the sequence.

In an in-depth study, we find that it is critical to promote spatially compact instance predictions as spatio-temporal instance queries tend to merge multiple semantically similar instances, even if they are spatially distant. To this end, we regress 6-DOF bounding box parameters from spatio-temporal instance queries, which is used as an auxiliary task to foster spatially compact predictions.

Mask4Former achieves a new state-of-the-art on the SemanticKITTI test set with a score of 68.4 LSTQ, improving upon published top-performing methods by at least +4.5%.



      title = {{Mask4Former: Mask Transformer for 4D Panoptic Segmentation}},
      author = {Yilmaz, Kadir and Schult, Jonas and Nekrasov, Alexey and Leibe, Bastian},
      booktitle = {International Conference on Robotics and Automation (ICRA)},
      year = {2024}